Title: Extended B-cell phenotype in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: a cross-sectional study

Short title: B-CELL PHENOTYPE IN ME/CFS PATIENTS

Fane Mensah¹, Amolak Bansal², Saul Berkovitz³, Arti Sharma¹, Venkat Reddy¹ Maria J. Leandro¹ and Geraldine Cambridge¹

¹Department of Rheumatology Research, Division of Medicine, University College of London, London, United Kingdom
²Department of Immunology, Epsom and St Helier University Hospitals NHS Trust, London, United Kingdom
³Department of Neurology, Royal London Hospital Of Integrated Medicine, London, United Kingdom

Corresponding Author

Geraldine Cambridge, PhD
Department of Rheumatology Research, Division of Medicine
University College London, Rayne Building, 5 University Street
London WC1E 6JF

United Kingdom. Email: g.cambridge@ucl.ac.uk
Telephone: +44 (0) 2031082164; FAX: +44 (0) 2076799143

Keywords (3-5): Chronic Fatigue Syndrome, Myalgic encephalomyelitis, B-cells, Human, Flow cytometry

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/cei.12749
Abbreviations: ME/CFS- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, CD-cluster of differentiation, HC-Healthy Control, MFI- Mean Fluorescence Intensity, CDC-Center of Disease control, EBV- Epstein Barr virus, NK-Natural Killer, NKp46- Natural killer cell p46-related protein, KIRs-killer cell immunoglobulin-like receptors, KIR3DS1-killer cell immunoglobulin-like receptor three domains short cytoplasmic tail, IM-infectious mononucleosis, NKp46- Natural killer cell p46-related protein, B-CLL-B-cell chronic lymphocytic leukemia, BAFF- B-cell activating factor, sCD23-soluble CD23, SFLC-serum free light chains, RLHIM-Royal London Hospital of Integrated Medicine, PBS-phosphate-buffered saline, BAFF-R- B-cell activating factor receptor, ELISAs-Enzyme-linked immunosorbent assay, CR2-complement receptor 2.
Summary:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a heterogeneous condition of unknown etiology characterized by multiple symptoms including fatigue, post-exertional malaise and cognitive impairment, lasting for at least 6 months. Recently, two clinical trials of B-cell depletion therapy with rituximab (anti-CD20) reported convincing improvement in symptoms. A possible but undefined role for B-cells has therefore been proposed. Studies of the relative percentages of B-cell subsets in patients with ME/CFS have not revealed any reproducible differences from healthy controls (HC). In order to explore whether more subtle alterations in B-cell subsets related to B-cell differentiation exist in ME/CFS patients we used flow cytometry to immunophenotype CD19+ B-cells. The panel utilized IgD, CD27 and CD38 (classical B-cell subsets) together with additional markers. A total of 38 patients fulfilling Canadian, Centre for Disease Control, and Fukuda ME/CFS criteria and 32 age/sex-matched HC were included. We found no difference in percentages of classical subsets between ME/CFS patients and HC. However, we observed an increase in frequency \((p<0.01)\) and expression (MFI; \(p=0.03\)) of CD24 on total B-cells, confined to IgD+ subsets. Within memory subsets, a higher frequency of CD21+CD38- B-cells (>20%) was associated with the presence of ME/CFS (Odds ratio: 3.47 (1.15-10.46); \(p=0.03\)) compared with HC and there was a negative correlation with disease duration. In conclusion, we identified possible changes in B-cell phenotype in patients with ME/CFS. These may reflect altered B-cell function and if confirmed in other patient cohorts, could provide a platform for studies based on clinical course or responsiveness to rituximab-therapy.
Introduction:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is characterized by multiple symptoms including fatigue, post-exertional malaise and cognitive impairment, which last for at least 6 months. The diagnosis of ME/CFS is currently made in patients with prolonged fatigue having many of the additional symptoms in the Canadian, Center of Disease control (CDC) and Fukuda diagnostic criteria (1-3). The majority of patients with ME/CFS have a history of documented viral or other infections prior to onset of their illness (4, 5). This has been suggested to underlie some of the immunological abnormalities often described in patients with ME/CFS (6-9). However, strong evidence for persistent or chronic infection with microorganisms is lacking in the majority of patients. The consistency of results of biomedical research, which has been applied to the study of ME/CFS, coupled with the wide range of physical, neurocognitive and autonomic symptoms reported have seriously hampered attempts to understand pathophysiological pathways in ME/CFS.

Differences from healthy controls (HC) have however been suggested by some studies of the immune system. Several groups have described a decrease in cytotoxic activity of Natural Killer (NK) and T-cells, predominantly by the reduction of granzyme or perforin levels (10-13). Similar to which is also commonly associated with herpes virus infections (14). In contrast, Curriu et al. found an increase of Nkp46 (natural cytotoxicity on NK-cells) and CD69 (activation marker) expression on NK-cells (15). Genomic polymorphisms of killer cell immunoglobulin-like receptors (KIRs) has also been described with an excess of KIR3DS1 combined with increased levels of ligand-free KIRDL1, which may hamper the recognition of target structures of pathogens by NK-cells (16).

Cytokine levels in serum and cerebrospinal fluid of ME/CFS patients, compared with those in HC, have also been inconsistent (17-22). As with immune cell phenotype and
function, this may be due to differences in laboratory methodologies, patient selection, phase of illness as well as the timing of sampling.

Rather than comparing to HC, Hickie et al prospectively evaluated cytokine production (post infection) in patients with proven EBV who had developed ME/CFS compared with those who did not develop ME/CFS after an EBV infection, but no significant differences were found (23). Interestingly, a study by Brodrick et al of adolescent patients developing ME/CFS following infectious mononucleosis (IM) compared with controls who recovered normally, showed an increase in IL-8 and a decrease in IL-5 and IL-23 cytokines (24). The IL-8 and IL-5 pattern is also seen in asthma and in B-cell chronic lymphocytic leukemia (B-CLL) (25, 26). The most significant difference was the level of IL-23, which was lower in ME/CFS patients. IL-23 is essential for the full and sustained differentiation of the inflammatory Th17 T-cell subset (27).

Focus on the possible involvement of B-cells in expression of ME/CFS was boosted after both investigator and patient-reported improvement following B-cell depletion therapy with single treatment, and maintenance therapy using rituximab (28, 29). Response to rituximab-based therapy in autoimmunity is usually associated with the presence of pathogenic autoantibodies. In ME/CFS, there are a number of reports of autoantibodies (30-33). Anti-muscarinic and anti-adrenergic antibodies have been described in two studies in some ME/CFS patients (33, 34). Studies of B-cell phenotypes in ME/CFS have sometimes shown differences from HC (35-37). For example, Klimas et al described an elevated proportion of CD20 and CD21 positive B-cells, confirmed by Tirelli et al in 1994 and also an increase in absolute numbers of CD19 and CD5 positive B-cells (38, 39). More recently, Bradley et al showed significant increases in transitional and naive B-cell subsets compared with HC, but in contrast, naive B-cells were reportedly decreased and memory B-cells increased in another study by Brenu et al (11, 40).
In order to provide a possible platform for studies of B-cell function in patients with ME/CFS we have used a more extensive panel of phenotypic markers to define B-cell subsets. The aim therefore was to investigate expression of additional phenotypic markers associated with B-cell maturation, differentiation and activation. Many different combinations of surface markers have been used to identify stages of B-cell differentiation in malignancy, immunodeficiency and autoimmunity, specifically, CD5, CD23, CD24, CD38, CD27 and IgD (40-45).

In this study we have used the Bm1-Bm5 classification (IgD/CD38) to identify transitional B-cells, naïve B-cells, memory populations including post germinal-centre cells and plasmablasts, as well as IgD/CD27 for naïve, switched and pre-switched memory B-cells (42, 46). Additional markers such as BAFF-Receptor (BAFF-R), CD5, CD21 and CD24 were also included. This approach has been used in patients with Sjögren's syndrome (42), but not yet in ME/CFS.

Levels of B-cell products including BAFF, soluble CD23 (sCD23), as a measure of acquisition on CD27 phenotype, serum free light chains (SFLC) as a measure of plasmablast activity and serum immunoglobulins (IgA, IgG and IgM) were also measured.
Materials and Methods:

Patients and HC

Patients diagnosed with ME/CFS fulfilling consensus criteria (Canadian, CDC and Fukuda) were selected for the study by Dr. Berkovitz (Royal London Hospital of Integrated Medicine) and Dr. Bansal (St. Helier Hospital NHS Trust). Clinical assessments were then performed to assess patient’s eligibility for study inclusion. Patients were informed verbally about the study and additionally given information sheets with written informed consent. Medical history (disease duration, symptoms and co-morbidities) was recorded for the purpose of the study. At visit, after study inclusion, data from the Health assessment and depression score (HADS) were collected. Patients with confirmed autoimmune disease or receiving immunosuppression were excluded from the study, as well as those who had a history of depression (HADS>21), which was not linked to ME/CFS. The severity of chronic fatigue symptoms were assessed using both Bell (“The Doctor’s Guide to Chronic Fatigue Syndrome”; 1995) and Cox and Findley (“Severe and very Severe Patients with Chronic Fatigue Syndrome: Perceived Outcome Following and Inpatient Programme”; 2000) scales at visit. HC were age and sex matched individuals recruited from hospital staff, and volunteers amongst family and friends of patients without evidence of ME/CFS on the basis of completed diagnostic criteria questionnaires. Whole blood and serum samples were available from 38 ME/CFS patients (ranged from 18-71) and 32 age- and sex-matched HC (16-74); their demographics are presented in Table 1.

This study has been approved by the NRES Committee London-City Road & Hampstead Research ethics Committee (REC reference: 14/LO/0388).
B-cell immunophenotyping

Three mL of whole blood was washed twice in phosphate buffered saline (PBS) and cells divided over two tubes and stained for 20 min with fluorescent conjugates of CD19, CD38 (Biolegend, San Diego, CA) IgD, CD21, IgM, CD5, CD23 (BD Biosciences, San Jose, CA) CD27, CD24 and BAFF-R (eBioscience, San Diego, CA). Combinations are shown in Table 2. Erythrocytes were lysed with BD PharmLyse™ lysing solution, washed twice in PBS and resuspended in 2% Paraformaldehyde to fix the cells. Finally, cells were washed and resuspended in PBS and acquired within 24 hours on a BD LSR Fortessa™. Gating strategy for IgD/CD27 and IgD/CD38 are shown in Figure 2. Compensation beads (BD, Biosciences, San Jose, CA) were used to optimize fluorescence compensation settings for multicolor flow cytometric analysis.

Measurement of soluble factors associated with B-cell survival and differentiation

Commercial ELISA kits were used to measure serum sCD23 and BAFF/BLyS levels (R & D systems Europe Ltd; Abingdon, UK); normal range and upper limit of normal range given by manufacturers being 1235-5024 pg/mL and <1.8 ng/mL respectively. Both κ and λ SFLC (normal ranges of 3.3-19.4 mg/L and 5.7-26.3 mg/L respectively) and serum total immunoglobulins IgA (normal range, 0.9-5.0 g/L), IgG (6.1-16.2 g/L) and IgM (0.4-2.4 g/L) were measured by Binding Site (Birmingham, UK) using their in house methods and reference values.

Statistics

Comparisons of levels of serum factors and B-cell phenotypes (both frequency and expression) between patients and HC were made using non-parametric tests (Mann-Whitney U test), and linear regression (Pearson correlation coefficient) using Graph Pad Prism 6 (GraphPad, San Diego, USA) with significance level of 5%. Odds ratios
(95% confidence interval) were calculated from the 3x2 contingency table based on tertiles of the distribution.

Results:

Patients and serology

Demographics of ME/CFS patients and HC, and measures of serum analytes are shown in Table 1. Patients with respiratory or other infections at visit were excluded from the study. The majority of patients were of moderate severity, as assessed by their referring clinician (SB and AB). There was no significant difference between HC and ME/CFS patients with respect to age and sex (Table 1).

When serum levels of BAFF, sCD23, and SFLC (ratio κ/λ) were compared, no significant differences were found between ME/CFS patients and HC (Table 1). As shown in Figure 1, levels of total serum IgA and IgM were also not different from HC (Figure 1A & 1C), but IgG levels in ME/CFS patients were significantly raised when compared with HC ($p=0.02$; Mann-Whitney U test) and 7/35 had levels above the upper limit of normal range (Figure 1B).

Classical B-cell subsets as defined using IgD, CD27 and CD38

Representative plots of the classical B-cell subsets defined by IgD/CD27 (Figure 2C) and IgD/CD38 (Figure 2D) are shown in Figure 2. As shown in Table 3, no significant differences were found between frequencies (% CD19$^+$ B-cells) of all 9 B-cell subsets and of plasmablasts between ME/CFS patients and HC.

Naïve and memory B-cell populations assessed by IgD/CD38 were confirmed by the additional usage of the memory marker CD27 (Supplementary Figure-1). Transitional (IgD$^-$CD38**) and naïve (IgD$^+$CD38$^+$) B-cells were low for CD27, while IgD$^+$ memory (IgD$^+$CD38$^-$), post GC (IgD$^-$CD38$^+$), resting memory (IgD$^+$CD38$^+$) and plasmablasts (IgD$^-$
CD38+++ consisted of predominantly CD27+ cells (Supplementary Figure-1A). No significant differences were found between HC and patients with ME/CFS.

Expression of other markers within IgD/CD38 B-cell subsets

Using IgD and CD38 we thus distinguished between 5 B-cell subsets and plasmablasts and found no difference between HC and ME/CFS patients (Table 3). The frequency of additional B-cell markers (BAFF-R, CD21, CD23, CD5, IgM and CD24) within each subset defined by IgD/CD38 where then determined.

The frequency of BAFF-R, a principal receptor required for BAFF-mediated B-cell survival in humans principally of transitional/naïve B-cells (47) was found to be present on the majority of B-cells throughout B-cell maturation, but is decreased in post GC B-cells (IgDCD38+) and low on plasmablasts (IgDCD38+++) (Supplementary Figure-2). No differences were found between HC and patients with ME/CFS in the 5 B-cell subsets, we did find a significant increase in frequency of BAFF-R in plasmablasts in patients compared to HC (p<0.01). However as numbers of plasmablasts were low in both groups, the significance of this is questionable.

CD21 (complement receptor, CR2) and CD23 (FcεR, low affinity receptor for IgE) are both important in B-cell antigen presentation (48, 49). Relative frequencies of CD21 and of CD23 in B-cell subsets defined by IgD/CD38 are shown in Supplementary Figure-3A & 3B respectively. CD21 was found on most B-cell subsets but decreased with differentiation towards plasmablast stage. CD23 was present in approximately 50% of naïve B-cells and decreased rapidly with differentiation to memory/plasmablast phenotype. No differences were found between HC and ME/CFS patients for frequency of CD21 and CD23 positive cells. Although, there was a trend for a higher percentage of CD21 positive cells in IgD+CD38 B-cells, but this was not significant (p=0.09; Supplementary Figure-3A). CD5 was present on most transitional B-cells (±70%), but in small numbers on the remaining subsets. CD5 is mostly associated with early stages
of peripheral B-cell development (50). No differences were found between HC and ME/CFS patients (Supplementary Figure-4). IgM is the first immunoglobulin expressed on the surface of B-cells (transitional and naïve B-cells), and is secreted by IgD⁺ and IgM-only memory B-cells (42). Membrane IgM was therefore largely confined to naïve and IgD⁺ memory B-cells, with no differences in percentages of IgM positive cells in any subsets between HC and ME/CFS patients (Supplementary Figure-5). Further, no increased percentage or expression (mean fluorescence intensity; MFI) of any additional markers (data not shown) was found in total CD19⁺ B-cells except for CD24.

Expression of CD24 in B-cell subsets

CD24 was the only additional marker that showed significant differences in total B-cells (CD19⁺) in ME/CFS patients when compared with HC (Figure 3). After gating for CD24⁺ cells in total CD19⁺ B-cells (Figure 3A-C) both percentage and expression (MFI) of CD24 on total CD19⁺ B-cells (Figures 3E a and b)) were significantly higher in ME/CFS patients than HC (p<0.01 and p=0.03 respectively). CD24 is often used to characterize transitional B-cells (CD24⁺⁺CD38⁺⁺) as shown in Figure 3D, and also here the expression of CD24 was found to be significantly higher on the patient’s B-cells (Figure 3F; p=0.03).

Analysis of percentage CD19⁺ B-cells positive for CD24 and relative level of expression (MFI) within all subsets as defined by IgD/CD38, are shown in Figure 4. Gating strategy and an example for Post GC B-cells selected from total CD19⁺ B-cells are shown in Figure 4A. In Figure 4B-G the percentage (a) and MFI (b) of CD24 on all 5 B-cell subsets and plasmablasts are shown. There was a significantly increased percentage and MFI of CD24 predominantly associated with subsets co-expressing IgD: namely transitional B-cells (Figure 4Ba & 4Bb), naïve B-cells (Figure 4Ca & 4Cb) and IgD⁺ Memory B-cells (Figure 4Da & 4Db).
As shown in Table 3, there was no difference in percentage transitional B-cells between ME/CFS patients and HC using IgD/CD38 classification. Although we have found CD24 to be significantly different in ME/CFS patients from HC, these observations require confirmation in extended or alternative cohorts.

Relationships with disease duration

The frequency of classical B-cell subsets and of CD38 (negative, positive and high positive) and of CD27 (negative and positive) on B-cells were analysed in relation to age, sex and disease duration. There was a weak negative correlation between percentage CD38 negative B-cells and disease duration ($R^2=0.15; \ p=0.02$) (data not shown). CD21 was then used to follow differentiation stages within CD38 negative B-cells.

In combination with CD19, the CD19-C21 complex is an essential B-cell co-receptor that functions synergistically to enhance signaling through the B-cell antigen receptor in response to T-cell-dependent, complement-tagged antigens (51). By using CD21 along with CD38, the distribution was gated from B-cells and representative plots of a HC and a patient are shown in Figure 5. There was a trend towards an increase in the CD21$^+$ CD38$^+$ B-cell population in ME/CFS patients, but this was not significant (data not shown). To compare the relative frequencies of the CD21$^+$CD38$^-$ population between HC and ME/CFS patients, a cumulative distribution function (CDF) was performed (Figure 6A). In Table 4, tertiles of the distribution of HC and ME/CFS patients are shown along with odds ratios (95% CI) and p-values. Comparing the groups by tertile, there was no difference in risk between the first and second tertile, but a 3.5 fold increase in the odds of ME/CFS patients having levels of CD21$^+$CD38$^-$ B-cells of >20% ($p=0.05$). When the top tertile was compared to the bottom two tertiles combined (<20% CD21$^+$CD38$^-$) the odds ratio was 3.27 (1.15-10.46; $p=0.03$). Finally, a weak association between disease duration and CD21$^+$CD38$^-$ was found (Figure 6B).

Discussion

B-cells play an important role in adaptive immunity, primarily by producing antibodies. They are key players in a wide range of immunological diseases, ranging from diminished B-cell function (primary or secondary immunodeficiencies) B-cell transformation (leukemia, lymphoma) and production of autoantibodies (Rheumatoid Arthritis and Myasthenia Gravis). In ME/CFS evidence for B-cell dysfunction related to autoimmunity has been limited, however an increased incidence of B-cell lymphoma (mainly marginal zone stage) has been associated with previous history of ME/CFS (52). In this study we did find that serum total IgG levels were elevated in some patients, as is often found associated with autoimmunity (53-55), but this has not been reported in other cohorts.

The most convincing evidence for B-cell involvement in ME/CFS has been from a double-blind placebo-controlled clinical trial, where 10/15 (67%) of ME/CFS patients receiving the B-cell depleting agent rituximab, showed improvement in symptoms of fatigue, cognition, pain, and well-being compared to the placebo group (2/15; 13%) (28). Similar findings were found after maintenance treatment with rituximab (28, 29). It is unclear whether response to rituximab implicated a direct role for B-cells through direct interaction with other immune cells or via B-cell products such as antibodies, soluble factors such as cytokines or as a reservoir of B lymphotrophic viruses such as EBV. Rituximab is highly effective in the treatment of CD20-expressing lymphomas and has been used to good clinical effect in autoimmune diseases associated with proven (or suspected) pathogenic autoantibodies, for example by their formation of immune complexes (Rheumatoid Arthritis and Systemic Lupus Erythematosus) or by autoantibodies directly binding to cell surface receptors, for example Acetylcholine receptors (Myasthenia Gravis) (56, 57). Whether it is beneficial in ME/CFS by removing
as yet unidentified autoantibodies for example the recently described anti-muscarinic receptor antibodies (34) or by other means is not yet known.

Previous studies exploring B-cell phenotypes in ME/CFS patients have not shown consistent differences when compared with HC (38-40, 58). Using the classical B-cell markers IgD, CD27 and CD38 to delineate B-cell subsets in ME/CFS patients, we did not find a difference (%CD19 and MFI) when compared with HC, confirming studies by Curriu et al. In addition, the frequency and expression of BAFF-R, CD5, CD23 and IgM within IgD/CD38 defined populations were also found to be similar to HC. We did however find an increase in both frequency and expression of CD24 on total B-cells (CD19⁺), which was confined to subsets positive for IgD (associated with early B-cell subsets plus IgD⁺ Memory). The MFI of CD24 on transitional B-cells, defined by CD24/CD38, was also increased relative to HC but frequencies were similar. CD24 is a glycoprotein adhesion molecule expressed on the surface of most B-cells and differentiating neuroblasts (59). It is most extensively used as a marker for transitional B-cells, and is also expressed on metabolically active naive B-cells and to a lesser extent in terminally differentiated cells such as memory B-cells and plasmablasts. Interestingly, CD24-deficiency in CD24 knockout mice resulted in the reduction in late pre-B and immature B-cell populations in the bone marrow, but the functional consequences of increased expression have not been studied (60-62). CD24 is highly polymorphic in humans with some polymorphisms associated with increased risk and progression of autoimmune diseases including Multiple Sclerosis, Rheumatoid Arthritis, and Systemic Lupus Erythematosus (63-68). CD24 can also be overexpressed in many cancers, including B-cell lymphomas, and appears oncogenic (59). So far no SNPs or polymorphisms in CD24 have been related to ME/CFS. A study by Fujimoto et al found that cross-linking CD24 induces apoptosis in Burkitt’s lymphoma cells, which share similar characteristics with GC B-cells (69). The relative strength of antigen binding to the BCR largely determines B-cell survival, together with context dependent signals.
from T-cells and cytokines, but other stimuli mediated by co-stimulatory molecules such as CD24 works in synergy with the BCR perhaps changing stringency of autoreactive B-cell selection and expansion.

We also found differences from HC in the percentages of CD38 memory B-cells, which were positive for CD21. The frequencies of these cells were predominantly CD27+ and weakly associated with disease duration. A high percentage of this memory B-cell population was also associated with the presence of ME/CFS, with a significantly increased relative risk. A study in macaque monkeys has shown that CD21+CD27+ B-cells produce antibodies by polyclonal activation (PWM, protein A and CpG2006), without T-cell help and also that this memory B-cell population was able to proliferate at a higher rate than other B-cell subpopulations (70). Further studies of functional properties in ME/CFS need to be investigated to determine the importance or otherwise of these findings.

There is a general consensus that the pathophysiology of ME/CFS involves the central nervous system, with changes in neural signaling, which persist throughout the course of the illness. Metabolic abnormalities such as changes in mitochondrial function in muscle and other tissues are also well described in these patients (71-73). Immune system involvement in the periphery in the form of autoantibodies or cytokines could therefore underlie chronic changes to the central nervous system by dysregulating neural pathways.

Recently Hornig et al reported disturbed immune signatures in the cerebrospinal fluid of ME/CFS cases consistent with immune activation in the central nervous system, and a shift towards an allergic or T helper type-2 pattern (20). The same group reported that there was a dissociation of intercytokine regulatory networks in ME/CFS cases where CD40L was found to be decreased and IFNα increased in patients with a disease duration of 3 years or less compared to those with >3 years history and also with HC.
(21). These findings were suggested to be the consequences of immune triggering following an infection.

An important difference between ME/CFS and established diseases is the absence of clear symptom-based ‘biomarkers’ which can be compared with control groups. Since ME/CFS is highly heterogeneous it might therefore be more productive to identify possible sub-groups of patients both for the purpose of research and to target therapeutic interventions.

Conclusion

ME/CFS is a complex condition, but this preliminary study using additional combinations of B-cell surface markers, not used before in ME/CFS phenotyping, confirmed the little overall difference in B-cell subsets found in earlier studies. Stating that our most important findings were found by using extended markers. We have tentatively identified sub-groups of patients on the basis of B-cell phenotype and disease duration. Retention of CD24 and CD21 within B-cell subsets may have implications for changes in thresholds for B-cell differentiation. If confirmed in other patient cohorts, these results may provide a possible platform for functional studies and to follow disease course over therapy.
Acknowledgements

FM performed all the experiments under the supervision of GC. FM and AS designed the patient protocols. MJL and VR contributed to discussions of results. AB, SB, MJL, VR and AS reviewed the manuscript. FM and GC wrote the manuscript. Clinical assessments and recruitment of patients was by AB and SB. All authors also had access to raw data. The authors would also like to thank all the patients who participated in the study. We would also like to thank Dr. Lakhvir Assi of Binding Site for performing SFLC and Immunoglobulin measurements and Dr. Jackie Cooper for expert help with statistical analyses. This work was funded by the Invest in ME charity (registered UK charity number: 1114035).

Conflict of Interest

The authors have no conflicts of interest to declare.
Table 1. Patient demographics and serology: HC vs. ME/CFS patients

<table>
<thead>
<tr>
<th></th>
<th>HC (N=32)</th>
<th>ME/CFS patients (N=38)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age in years</td>
<td>39 (16-74)</td>
<td>40 (18-71)</td>
<td>0.79*</td>
</tr>
<tr>
<td>(range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage Female</td>
<td>59.4</td>
<td>64.9</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th></th>
<th>Median (range)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAFF (ng/mL)</td>
<td>0.3 (0.2-1.7)</td>
<td>0.39</td>
</tr>
<tr>
<td>sCD23 (pg/mL)</td>
<td>2479 (927.2-6679)</td>
<td>0.48</td>
</tr>
<tr>
<td>k SFLC (mg/L)</td>
<td>12.6 (6.0-39.3)</td>
<td>0.85</td>
</tr>
<tr>
<td>λ SFLC (mg/L)</td>
<td>9.9 (5.9-25.2)</td>
<td>0.86</td>
</tr>
<tr>
<td>k/λ SFLC ratio</td>
<td>1.2 (0.7-2.9)</td>
<td>0.73</td>
</tr>
<tr>
<td>IgA (g/L)</td>
<td>2.5 (0.8-5.1)</td>
<td>0.54</td>
</tr>
<tr>
<td>IgG (g/L)</td>
<td>10.8 (6.8-18.7)</td>
<td>0.02*</td>
</tr>
<tr>
<td>IgM (g/L)</td>
<td>0.9 (0.4-2.0)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

a) Normal reference ranges: BAFF (<1.8ng/ml); sCD23 (1235-5024pg/ml); kSFLC (3.3-19.4mg/L); λSFLC (5.7-26.3mg/L); k/λ SFLC (0.3-1.7); IgA (0.9-5.0g/L); IgG (6.1-16.2g/L); IgM (0.4-2.4g/L).
b) *Mann-Whitney U test was used to determine differences between HC and ME/CFS patient; n.a.: not applicable *: significant
Table 2. Antibody panel for whole blood staining

<table>
<thead>
<tr>
<th>Tube</th>
<th>CD19</th>
<th>IgD</th>
<th>CD38</th>
<th>CD27</th>
<th>CD5</th>
<th>CD21</th>
<th>CD24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE/Cy7</td>
<td>BV421</td>
<td>PerCP/Cy5.5</td>
<td>APC</td>
<td>FITC</td>
<td>PE</td>
<td>APC-eFluor® 780</td>
</tr>
<tr>
<td>2</td>
<td>CD19</td>
<td>IgD</td>
<td>CD38</td>
<td>CD27</td>
<td>CD23</td>
<td>BAFF-R</td>
<td>IgM</td>
</tr>
<tr>
<td></td>
<td>PE/Cy7</td>
<td>BV421</td>
<td>PerCP/Cy5.5</td>
<td>APC-eFluor® 780</td>
<td>FITC</td>
<td>PE</td>
<td>APC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Table 3. Percentage of B-cells (CD19⁺) in total lymphocytes and B-cell subsets defined by IgD/CD27 and IgD/CD38 in HC and ME/CFS patients

<table>
<thead>
<tr>
<th></th>
<th>HC (N=32)</th>
<th>ME/CFS (N=38)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total B-cells (CD19⁺)</td>
<td>4.6 (1.6-13.6)</td>
<td>4.7 (1.0-13.6)</td>
<td>0.80</td>
</tr>
<tr>
<td>B-cell subsets using IgD and CD27 (%CD19⁺ B-cells)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve (IgD⁺CD27⁺)</td>
<td>58.6 (32.2-89.9)</td>
<td>57.1 (21.0-86.3)</td>
<td>0.90</td>
</tr>
<tr>
<td>IgD⁺ pre-switch (IgD⁺CD27⁺)</td>
<td>16.6 (3.6-31.1)</td>
<td>19.1 (1.2-32.8)</td>
<td>0.46</td>
</tr>
<tr>
<td>Switched memory (IgD⁺CD27⁺)</td>
<td>18.0 (1.6-39.0)</td>
<td>17.4 (1.2-47.0)</td>
<td>0.40</td>
</tr>
<tr>
<td>Double negative memory (IgD⁺CD27⁺)</td>
<td>4.6 (1.8-20.1)</td>
<td>4.8 (1.4-14.0)</td>
<td>0.99</td>
</tr>
<tr>
<td>B-cell subsets using IgD and CD38 (%CD19⁺ B-cells)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitional (IgD⁺CD38⁺⁺)</td>
<td>6.7 (1.8-15.0)</td>
<td>6.0 (0.7-6.7)</td>
<td>0.71</td>
</tr>
<tr>
<td>Naïve (IgD⁺CD38⁺)</td>
<td>56.2 (34.3-80.20)</td>
<td>54.5 (21.8-77.7)</td>
<td>0.69</td>
</tr>
<tr>
<td>IgD⁺ memory (IgD⁺CD38⁺)</td>
<td>11.6 (2.7-22.0)</td>
<td>13.9 (4.8-30.1)</td>
<td>0.12</td>
</tr>
<tr>
<td>Post GC memory (IgD⁺CD38⁺)</td>
<td>12.1 (3.7-32.2)</td>
<td>9.5 (2.3-26.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>Double negative memory (IgD⁺CD38⁺)</td>
<td>7.6 (1.7-20.2)</td>
<td>7.6 (1.6-22.9)</td>
<td>0.63</td>
</tr>
<tr>
<td>Plasmablasts (IgD⁺CD38+++)</td>
<td>1.8 (0.3-4.8)</td>
<td>1.2 (0.3-6.8)</td>
<td>0.60</td>
</tr>
</tbody>
</table>

a) Median and (range); •Mann-Whitney U test was used to compare values of B-cells and their subsets in HC and ME/CFS patients.
Table 4. Comparison of frequencies of %CD21^+CD38^- B-cells in HC and ME/CFS patients

<table>
<thead>
<tr>
<th>Tertile</th>
<th>HC (N=32;%)</th>
<th>ME/CFS (N=38;%)</th>
<th>Odds ratio (95 CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (<14.8)</td>
<td>40.6</td>
<td>27.8</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>2 (14.8-20.3)</td>
<td>40.6</td>
<td>27.8</td>
<td>1.00 (0.31-3.21)</td>
<td>1.00</td>
</tr>
<tr>
<td>3 (>20.3)</td>
<td>18.8</td>
<td>44.4</td>
<td>3.47 (0.99-12.09)</td>
<td>0.05*</td>
</tr>
</tbody>
</table>

1+2 vs. 3 (≤20.3 vs. >20.3) 3.47 (1.15-10.46) 0.03*

a) *: Significant (p<0.05).
References

Figure 1: Serum total immunoglobulin levels in patients with ME/CFS (N=38) and age and sex matched HC (N=26).
Concentrations (g/L) of serum immunoglobulins are shown for IgA (A), IgG (B) and IgM (C). Each symbol represents one individual: solid line represents median, shaded areas show reference ranges given by Binding site (UK) and p values are shown (Mann-Whitney U test; ns= not significant).

Figure 2: B-cell gating strategy.
Representative plots (using whole blood from a HC) showing (A) lymphocytes selected based on side-scatter vs. forward-scatter in which (B) B-cells expressing CD19 were then selected. In (C) and (D) respectively IgD/CD27 and IgD/CD38 B-cell sub-populations are shown.

Figure 3: Frequency and expression of CD24 on B-cells in patients with ME/CFS (N=36) and age and sex matched HC (N=32).
Representative plots (using whole blood from a HC) showing (A) lymphocytes selected based on side-scatter vs. forward-scatter in which (B) B-cells expressing CD19 were then selected. (C) CD24 expressing CD19⁺ B-cells were selected and (D) CD19⁺ B-cells were plotted for CD24 and CD38 to identify transitional B-cells (CD24**⁺⁺ CD38**⁺⁺). In (E) a) and E b) frequency (%) and expression (MFI) of CD24⁺⁺ CD19⁺ B-cells on CD19⁺ B-cell are shown. In (F) expression (MFI) of CD24 on CD24**⁺⁺ CD38**⁺⁺ transitional B-cells is shown each symbol represents one individual: Bar represents median and p values are shown (Mann-Whitney U test).
Figure 4: Frequency and expression of CD24 on B-cell subsets in patients with ME/CFS (N=36) and age and sex matched HC (N=32).

(A) Gating strategies used to identify 6 B-cell subsets as defined by IgD/CD38 and then selected for CD24 are shown (representative plots from a HC). (B-G) For each subset CD24 (a) frequency (%) and (b) expression (MFI) are shown. (B) Transitional B-cells; (C) naïve B-cells; (D) IgD+ memory B-cells; (E) Post GC B-cells; (F) Resting memory B-cells; and (G) Plasmablasts. Each symbol represents one individual: Bar represents median and p values are shown (Mann-Whitney U test; ns= not significant).

Figure 5: Distribution of CD38^2CD21^+ B-cells in HC and ME/CFS patients.

Representative plots (using whole blood from a HC) showing (A) lymphocytes selected based on side-scatter vs. forward-scatter and (B) B-cells expressing CD19. In (C) and (D) relative expression of CD21^+CD38^3 on B-cells within the CD19^+ gate are shown for a HC and a ME/CFS patient respectively.

Figure 6: Cumulative distribution function and association with disease duration of CD21^+CD38^− B-cells.

(A) The calculated (normal) frequency of CD21^+CD38^− B-cells in HC and the actual frequencies of CD21^+CD38^− B-cells in HC and ME/CFS patients were plotted in a cumulative distribution function graph. Distribution is divided into three tertiles as shown by the same shading in each graph. (B) The percentage of CD21^+CD38^− B-cells in ME/CFS patients were plotted against disease duration. Each symbol represents one individual: Dashed lines represent cut-offs for tertiles. Statistical significance was calculated using linear regression and Pearson’s correlation coefficient is shown.
Supplementary Figure-1:
(A) Frequency (%) of CD27 on CD19⁺ B-cell subsets from HC (N=31) and ME/CFS patients (N=35) in subsets defined by IgD/CD38 and
(B) frequency of CD27 on CD21⁺CD38⁻ B-cells (Box and whiskers). Each symbol represents one individual: Bars represent median values.

Supplementary Figure-2:
Frequency (%) of BAFF-R on CD19⁺ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.

Supplementary Figure-3:
(A) Frequency (%) of CD21 and (B) CD23 on CD19⁺ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.

Supplementary Figure-4:
Frequency (%) of CD5 on CD19⁺ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.

Supplementary Figure-5:
Frequency (%) of IgM on CD19⁺ B-cell subsets in HC (N=27) and ME/CFS patients (N=32) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.
This article is protected by copyright. All rights reserved.
Supplementary Figure-1: (A) Frequency (%) of CD27 on CD19+ B-cell subsets from HC (N=31) and ME/CFS patients (N=35) in subsets defined by IgD/CD38 and (B) frequency of CD27 on CD21+CD38 B-cells (Box and whiskers). Each symbol represents one individual; Bars represent median values.
Supplementary Figure-2: Frequency (%) of BAFF-R on CD19+ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual; Bars represent median values.

- **Transitional**
 - (IgD⁺CD38⁺⁺)

- **Naive**
 - (IgD⁺CD38⁺)

- **IgD⁺ memory**
 - (IgD⁺CD38⁺)

- **Post GC**
 - (IgD⁺CD38⁺)

- **Resting memory**
 - (IgD⁺CD38⁺)

- **Plasmablasts**
 - (IgD⁺CD38+++)

% positive for BAFF-R

Healthy Controls

ME/CFS Patients
Supplementary Figure-3: (A) Frequency (%) of CD21 and (B) CD23 on CD19+ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual; Bars represent median values.

- Healthy Controls
- ME/CFS Patients

242x187mm (150 x 150 DPI)
Supplementary Figure-4: Frequency (%) of CD5 on CD19+ B-cell subsets in HC (N=32) and ME/CFS patients (N=36) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.

- Transitional (IgD⁺CD38⁺⁺)
- Naive (IgD⁺CD38⁺)
- IgD⁺ memory (IgD⁺CD38⁺)
- Post GC (IgD⁻CD38⁺)
- Resting memory (IgD⁻CD38⁻)
- Plasmablasts (IgD⁻CD38⁻⁻⁻)

% positive for CD5

Healthy Controls
ME/CFS Patients
Supplementary Figure-5: Frequency (%) of IgM on CD19+ B-cell subsets in HC (N=27) and ME/CFS patients (N=32) as defined by relative expression of IgD/CD38. Each symbol represents one individual: Bars represent median values.

- Transitional (IgD⁺CD38⁺⁺)
- Naive (IgD⁺CD38⁺)
- IgD⁺ memory (IgD⁺CD38⁻)
- Post GC (IgD⁻CD38⁻)
- Resting memory (IgD⁻CD38⁻)
- Plasmablasts (IgD⁻CD38⁻⁻⁻)

% positive for IgM

Healthy Controls
ME/CFS Patients